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Zigzag structures and domain walls in electroconvection of nematic liquid crystal
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To describe the secondary-bifurcation scenario in ac-driven electroconvection of a planarly aligned nematic
liquid crystal layer, we have constructed a generic phase equation coupled&tdimetor. The equations are
applicable in particular in the vicinity of the codimension-2 point, where the zigzag and the abnormal roll
instabilities meet. This point is also the origin of a line of homoclinic bifurcations, which separates a region
where one has stationary zigzag walls from one with spontaneously accelerated abnormal roll walls. The final
velocity of the walls depends linearly on the distance from the bifurcation. We analyze the scenario analyti-
cally, test it numerically and propose an experimental check.

PACS numbse(s): 61.30.Gd, 47.20.Ky, 47.6%.a

I. INTRODUCTION [13,14 by the conventional techniques and quantitative ex-
periments on them would be interesting.
ac-driven electroconvection in planarly aligned nematic These moving domain walls initiate a route to spatiotem-
liquid crystal layers has become one of the prime exampleporal chaos. As the voltage is increased the walls are created
for anisotropic pattern formation. Over the last decades thepontaneously, together with defe@déslocations and phase-
rich-threshold and near threshold scenario has been largeslip lines. Thus a very anisotropic spatiotemporally chaotic
clarified (with some interesting exceptions, see, €l.d,2]) state with structures that are extended in the direction per-
and much of the interest has shifted to secondary and highgrendicular to the rolls is establishéi4]. A description of
instabilities[3]. From numerical bifurcation analysis of roll this state in terms of more general equations where the am-
solutions in the standard hydrodynamic framework, it haslitude of the roll pattern is included, appears promising.
become clear that the first destabilization of the commorSuch equations have been derived for electroconvection in
normal rolls(NRs), which are oriented perpendicular to the homeotropic systemld 5,16, but an adaption to planar sys-
alignment axis, occurs with increasing voltage not onlytems is possibl¢16].
through the well-known zigzagzZz) instability [4—6], but In Sec. Il, we construct the equations valid in the neigh-
also through a homogeneous symmetry breaking leading tBorhood of the C2 point at voltagé g and frequencywar
abnormal ro"s(ARs) [7_9] In the conduction range this and in Sec. Il the Stablllty of their homogenOUS solutions,
occurs at higher frequency. In ARs there is a rotation of thecorresponding to straight rolls, is studied. In Sec. 1V, the
aA . ; . ~ stationary ZZ solutions are analyzed, leading in particular to
c director (projection at midplane of the directoronto the S ; .
cell plane out of its symmetric orientation perpendicular to th'e homocllnlg blfurcatlon line. The results are compared
. . - with the experiments in a channel geomdtht,17] and the
the rolls, either to the left or to the right, homogeneously in

. . effect of a finite width is considered in Sec. V. In Sec. VI we
the cell plane. Because of the planar anchoring the rOtat'Oanalyze the traveling domain walls and in Sec. VIl we inter-

vanishes at the bounding plates, resulting in a twist deformas o the results, discuss the limitations of the model and re-

tion and making the deformation difficult to detect by the 346 1o convection in homeotropically aligned cells and other
usual optical techniqug4.0]. systems.

The two instabilities meet in a very unconventional
codimension-2C2) point, where two more lines emerge: a
line where ARs restabilize against ZZ modes, and an inter-
esting line of homocliniqor heteroclini¢ bifurcations. We Il. THE COUPLED;'EiE%U;\?S'LANDAU PHASE
have recently shown that this scenario can be understood Q

from very simple phenomenological equations including We now construct phenomenological equations in order

only the phase of the roll pattern and the AR mdi&]. to describe the system in the vicinity of the C2 point
Here we will discuss these equations in greater depth anqy/,r, wag) [7,8,11 (with the voltageV we always denote

in particular, present new results concerning the motion othe RMS of the ac voltage

domain walls separating the two versions of ARs. The most Near the AR transition, there are two weakly damped

interesting feature is that those walls, which below the ho'modes, the phase mode of the roll pattern andctidirector

moclinic bifurcation (HB) line induce a ZZ configuration, de. Thee direct be visualized th acti f
accelerate spontaneously beyond the HB line and settle do ode. Thec director can be visualized as the projection o
e director at the midplane on the x, y plane. etlescribe

at a velocity that depends linearly on the distance from thd N
bifurcation. This is unusual: conventional acceleration instathe (rea) amplitude of thec-director mode(i.e., an anglg
bilities are like pitchfork bifurcations with the velocity pro- and © =gx+ 6 be the phase of the roll pattern, such that
portional to the square root of the distance from the bifurcagx+ V @ gives its local wave vector. The transition from NRs
tion point [12]. These domain walls are easily observableto ARs is described most simply by
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5t¢:(ﬂ—9¢2)¢+(K1¢95+ K23§)¢_ ¥y 0, (1) Thus in the cas®=0 one hasps=0 (NR9), which is stable
against homogeneous perturbationsger 0. At ©=0, NRs
with positiveg, K; andK,. The first expression on the right- lose stability and one has a pitchfork bifurcation generating
hand side(rhs) describes the supercritical pitchfork bifurca- two branches of ARs withps= ¢pag=* \/u/g. In the case
tion to ARs asu passes from negative to positive and theP+#0 (oblique rollg, one has from the cubic polynomigs)
second term gives diffusive smoothening by the elasticitiesa real rootgs; with sgn(¢s;) = —sgn(P) that varies continu-
We expectu to be roughly proportional t&/>—V345. The  ously with » and is stable against homogeneous perturba-

last term describes an additional torque on thelirector  tions. Atus,=3(yPg'%2)*® there is a saddle-node bifurca-
when the rolls areslightly) oblique[the local roll angle is tion generating two more real rootss, , sz With sgn(es,)
arctang,®/4,0)~4,6lq]. This torque acts as a bias on the =S9N(#s3) =sgn(P). Choosing ¢3|>| s/, the roote is
pitchfork bifurcation.y must be chosen positive, so reorient- Stable, the other one unstable.

g the rolls favors rotation of hé director in the opposie i 25 . BA0 g A1 TERREE 0 I e
sense, as is the case for all the nematics studiegl. 9

ot +1(SX+5Syy) i
The dynamics of the phase modulations is governed b)Tzhe growth rater of the modes~e 7%, One finds

the equation 1 1
o=--B+/-B2-C 6
910=(D 195+ D,d5) 0— (v+he?)dyé, 2) 2 4 ©

with positive D, D,, andh (as it turns out The first term ~ With
describes ordinary phase diffusion and the second expression
represents the coupling to teedirector mode. The nonlinear
term is essential, because, as we shall sempsses zero at
war. We then expectv to be roughly proportional taw

B=—u+39hi+(Ky+D)si+(Ky+Dy)sz,  (7)

C=[yr—D,u+3(gD,+hy/3) pZlsi+K,D,s;

~ WAR- +D4[ — pu+3gp3+K s34+ (Ky+K D, /D;)s2]s2.
Equations(1) and (2) contain the manifestly dimension- L=+ 3gdstKas+ (Kt KaD2/Dy)s)Is,
less parametersh’=yh/(D,g), v'=vy/(|u|Dy), Kj ®

=K,/D,, andK;,=K,/D,. It is useful to also consider a

. . . ili B> >0.
rescaled version of the equations by introductrgt’/|u|, For stability one need8>0 andC>0. Thus, for NRs

-~ , - , - =0, P=0), there is, aside from the homogeneous instability
x=\Dy/|u|x', y=\Dolluly’,  é=Vlullge, 0 5 =0 leading to ARs, a long-wave ZZ instabilitys,
=(|u|/y)VD,/g¥, and one obtains ~0s,#0) at

2 2 ’ ’
&tr19=(9x,19+&y,1()‘—(1} +h (Pz)ay'(Py (€©)) m= = S,,v With S,,=y/D,. 9

&t/(pZKi&i,(p-i- Kéﬁ)zl,gD-F(il—(pz)(p—&y,ﬁ, (4)  For negativer the ZZ instability comes first, and Eqél)
and (2) indeed describe the observed crossover scenario, as
The main assumption underlying the validity of E¢s)  indicated in Fig. 1a), lines AR and ZZ. From the expression
and(2) is that a smooth gradient expansion is possible. Thigor C one sees that a nonzegosuppresses the ZZ instability.
can be expected to hold for quasi-1D situatioispatial ~ For negativer this effect leads to restabilization of ARs
variations only inx or y, except for linear terms i). Oth-  above the line
erwise, singular mean-flow contributions are expected to
play a role. We will come back to this point in Sec. VII. _ . _ S,
Equations(1) and (2) are particularly well founded in 1= Srsv With SfS_SSZZ/Shb—Z'
situations without variations along(except for a linear term
in ). Then their derivation from the underlying hydrody- Shp=—13g/h, (10)
namic equations, including the nonsingular mean flow con-
tributions considered ifi7,8], is well established. There are, see Fig. 1a), line RS (we introducedS;,, for later conve-
however, problems with the magnitude of the coefficientsnience. Note that &,,/S,,= —h’. The denominator in the
when comparing with experimentsee Sec. ¥ The solu- expression forS,¢ could be positive and then the RS line
tions we consider here will mostly depend only ptexcep- would have a positive slope.
tion in Sec. V), so only their stability is influenced by varia- For (slightly) oblique rolls with¢= ¢¢;, P+#0, destabi-
tions alongx. lization still takes place in the form of a ZZ instabilityg,(
=0). The onset is obtained from the condition
11l. HOMOGENEOUS SOLUTIONS AND THEIR
STABILITY S — i+ 3(1-S,,/S) 94 =0, (11

Straight-roll solutiongnormal or obliqug are character- see dashed line in Fig.(d for yg¥?P=0.0011. In fact, at
ized by ¢=¢s (=const), 5,6=Q (const), and dy6 fixed v there is an unstable bubble in theP plane[Fig.
=P (=const), where from Eq1) 1(b); the valueyg?P=0.0011 is indicated by the dashed

5 line]. The half width P, ,, of the bubble is given by
(n—9ds)ps— yP=0. B 492, =2(2-3S,,/Sy) YA~ S, w/3)%2
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FIG. 2. (a) Thec director angleg for the heteroclinic ZZ solu-
tion and for the(normally orientedl AR; (b) wave numberP,, of

—0.12 ] ] ] 1 1 - e !
the oblique roll selected by the heteroclinic ZZ solution fer
0.000 0.002 0.004 0006 0.008 0.010 ) . .
1 =0.10. Also shown is the unstable bublgtashed ling of oblique
g 2p rolls. The other parametei3,=0.105,h=0.0876,g=0.182, and

y=0.0276 are taken from the hydrodynamicsest 1.0[18]. The

FIG. 1. (3) Stability diagram fo1S,,/S,= — 2/5. Solid(dashed dotted line shows the unstable bubble including mean-flow effect.

lines are forP=0 (yg?P=0.0011);(b) The unstable bubble in the

w-P plane for different values of. tions above the ZZ linéapart from phase shiftsvith wave

In a more accurate description, the modulation wave Vecpumberp between zero an@ma= V(1 —pz9/Kz, which

tor (s,.s,) that destabilizes oblique and abnormal rolls can be expressed in terms of elliptic functions. In particular
wouldxﬁayve a small. but nonzevo(?om onent §,#0) and there is the heteroclinic limip—0 where the solution de-
the unstable bubblé would be someENhat Ia?@e Sec generates to a widely spaced array of domain walls given by
VII) - ¢=d¢,, tanh@y) with ¢,,=(un—u,)/9’, a:pmax/\/z-
' They separate regions whegeapproaches the constant so-
lutions = ¢,, [Fig. 2@] and the roll angle approaches
IV. THE AR-ZZ SCENARIO Farctar(P,,/(q+ Q)) with

We now analyze the scenario expected wheis varied

for negativer. We first look for static solutions that depend g¥?%p, ~ Szz (o= ) Y2 1= pip)
only ony. Then one has the first integral of E@), Y9 Tz Sup(1—S,,/S,) ¥ B Bzl AT M)
14
Ddy 60— (v+h¢?/3) p=J(=cons). (12 (19
o Thus, the domain walls select a member of the oblique-roll
Eliminating 4,6 from Egs.(1), (12) leads to family. The angleand thereby the undulatipfirst increases
5 s with « and then decreasé¢Big. 2(b)], reaching zero at the
Kodyp=—(pu—pz) d+9'¢°+S;3J, (13  “HB line” [see Fig. 1B)].
with g’ =g(1-S,,/S,p), which can be integrated. Invoking L= hp= ShpV- (15)

the analogy of a point particlécoordinate, time y) one

sees that the bounded solutions are either congsaratight ~ There¢,, coincides with¢ag [Fig. 2(a)] and one is left with

rolls) or periodic (undulated rolls Without the appearance straight ARs with a(widely spaceyl array of domain walls

of defects the average orientation of rolls cannot change, seeparating regions with opposite director twist. Above this

the average of, 6 in the undulated rolls remains that of the line (and also for positiver) only moving domain walls

straight rolls & P) they were born from. From E¢l2) one  appear to exist stablgdetails will be discussed belgw

then hasl=D,P—((v+3h¢?) #) ((---) is the spatial av- Therefore, when the line HB is reached, the domain walls

erage. annihilate pairwise, and eventually a single-domain AR is
First we look for ZZ solutions in the cage=(d,0)=0,  established. From now on ARs persist under changes of the

where ¢ oscillates symmetrically around zerd£0). From  parameters until their stability limit is reached. The integra-

Eqg. (13) one gets a one-parameter family of periodic solu-tion constant] maintains the AR valu&(v+%h¢iR) bar
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(=0 atupp). Thus, on loweringe, ARs persist down to the 1.00

line RS where a discontinuous ZZ instability occurs. There is

a relation between the slopes of the three lines through the 050 F

C2 point,S;s=S,,/(3S,,/Syp,—2), which can be fitted with L RS

the experimental datgl1]. This relation is in fact invariant St~ - AR

under the linear mapping that connect the control parameters,, 0.00 f--------—-===

w and v of the model with the experimental control param-

etersV2—Vag and w — wpg. —0.50 L
Are the periodic solutions in the ZZ domain, i.e. between ’ 7

the ZZ and HB lines, stable? Clearly they are unstablgfor a4

nearpmay because the NRs, where they bifurcate fronpat —-1.00 L= ! '

=Pmax, are unstable in this range against,/2 with a —1.00 —0.50 0.00 0.50
max a

manifestly positive growth rate. Thus, presumably all peri- SV

odic solutions are unstable against coarsening, because a sta

bility boundary toward smaller values @fis not apparent. 0.50

Such a stability boundary would have to be related to a sta-

tionary bifurcation, which does not exist. 0.40
In the caseP#0, the corresponding scenario is shown in

Fig. 1(a) (dashed lings The ZZ instability remains sharp, 0.30

since translation invariance alonygremains intact, but one

hasJ#0 and the periodic solutions are asymmetric. In the P 0.20

heteroclinic limitJ approaches zero, so that the roll angles )

are again determined from E¢L4), but now the two arms

have different length. Approaching the HB line, which is 0.10
determined fronP,,=|P|, the relative length of the shorter 0.00 . . . .
arm vanishes. -1.00 -0.80 -—0.60 —0.40 —0.20 0.00

SV
V. COMPARISON WITH EXPERIMENTS; FINITE WIDTH i
. . FIG. 3. (a) Stability diagram with the damping terme=0.1
The NRs, ARs, and ZZ rolls have been studied experiiso|id): dashed lines pertain =0 (b) The critical wave numbers

mentally in a fairly narrow cell O_f dimensiorls,=315um, 4 the zZ instability and on the restabilization line 81,/S,,
L,~10000 um with the rolls oriented parallel to the long =0.4,K,=1, «=0.1.

scale, and show agreement with the scenario discussed above
[11,17. The slight asymmetry in the observed ZZs indicates
that a small, but nonzero wave numifewas present, result-

)2{—(2—3Szz/5hb)(a1+ S;pv) taay

ing presumably from a small misalignment between the (2—3S,,/Shp

alignment axis of the director and the short axis of the chan-

nel. —V8ay[2a;— (2 3S,,/Shp) (a1 + ;1) 1},
However, the slopes obtained from the experiments do

not agree with those obtained from theory, when the coeffi- 1

cients of Egs(1) and (2) are derived from hydrodynamics ~ Prs™ "~ K,(2—3S,,/Shp)
and taken near the C2 poir¥{r,waR)- The slopes obtained

in this way vary quite strongly with frequendy8]. X{2a1—V2a;[2a1—(2-3S5,,/Shp) (a1 +S,,v) ]}
The effect of the finite width of the experimental c€lR (18)
roll pairg) is to perturb translation invariance, which can be
accommodated in the model gy includingsmal) damping This does not change the topology of the scenario, but the
term — a6 with a~Dy(27/L,)* on the rhs of(2), C2 point is moved tu=0, v=—a, /S,,. The slopes of the

ZZ and RS lines become zero at the C2 point and the critical
9 0=(—a+D1d5+D,d;) 6—(v+he?)dyd.  (16)  wave number goes to zero there. The HB line is unchanged.
In Fig. 3, we have plotted the stability diagram and the criti-
As a result the ZZ instability sets in at finite wave numbercal undulation wave numbe, for the dampingr=0.1. The
p,,. One has finite wavelength of the ZZ undulations observed in the ex-

periment presumably results from this effect.
p==(=Sp=ey)?

VI. TRAVELING DOMAIN WALLS

1 .
_ T I—<a _ [a In the following we return to the unperturbed Ed$),
— ] l . .

P2z Kz e Sear—Vay) (7 (2). Since forP=0 the NR to AR transition corresponds to a

pitchfork bifurcation, one has coexistence of symmetry-
wherea;=(K,/D,)a. The restabilization line is character- degenerate states. One then expects the existence of station-
ized by ary domain walls separating the states. Obliqueness of the
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rolls acts as a bias and renders the bifurcation imperfect. For a b

YaYAP|< ygY2P 0= \/;,uw, i.e., for not too large roll
angle, there still remain two stable asymmetric abnormal roll
solutions, and traveling domain walls are expected to exist.
We will show that the situation is actually more complicated.
For the analysis of this problem we use the scaled Bjs.

and(4). We look for solutions where the wave vector of the
rolls is the same on both sides of the wall. We first separate
out from the phased all linear terms, i.e. we writed
=Q'x'+P’'y'+ ¥, where 9 can now be assumed to be Fi
bounded. In order to allow for domain walls of different ‘%
orientations we rotate the coordinate systeth= ¢ cosa
—{sina, y' = ¢sina+{cosa and consider solution® and

¢ that depend only on one space variablee choose?).
Then Eqgs(3), (4) reduce to

FIG. 4. Snapshots reconstructed from 1D simulations of perpen-
dicular walls moving downward. Across the wall the orientation of

the ¢ director changes. Double-headed arrows indicate the orienta-
tion far from the wall. The gray scales represet= (¢
+1.5)co$q'x’+9(y’)] (white: ®=0) with the wave numbeqg’
=0.2 of the pattern chosen arbitrarilfa) Wall between ARs par-

) 5 _ allel to the unperturbed director f&®' =0, v'=—-0.25, h'=0.9,
dpe=Kdzo+(1—¢°)p—cosad,I—P’, (200 @=0 (e—€y=0.05),K=1; (b) wall between slightly oblique ARSs:
P’=0.05,»'=-0.30,h"=0.9, a=0 (e—¢€;=0.05),K=1.

(9t15= ﬁ?g—(v’ + h'qoZ)COSa(?évgo, (19

with K=K sir® a+K}cos a. We look for solutions that de-

pend only onp=¢—Vt’, so that depending on which is largéi9]. The velocityV* pertains
y— — to the case where the velocity is selected by the leading edge
95 0+Va,0—(v'+h'¢%)cosad,¢=0, (21)  on the unstable sidéinear front selection The other case is

) _ actually very similar to the stable-stable waibnlinear front
Kdye+Va,e+(1- ) p— cosad,—P'=0. (22 selection.

A. Parallel walls B. Perpendicular walls

There is the simple case=(7/2) (cosa=0) pertaining Walls with cosa#0 behave very differently. Snapshots of
to walls parallel to normal roll§perpendicular to the undis- examples from numerical simulations are shown in Fig. 4.
turbed director. There thec director does not couple to the From Eg.(21) it follows that forV#0 (however smajlone
phase and one is left with the equation hasd,¥=0 at infinity (sinced,¢=0 therg, which is con-
sistent with the boundedness f#fand expresses phase con-
Ko2o+Vd, o+ (1—¢?)e—P'=0, 23 ) L —

n? et 1mede @39 servation. Eliminating’, & from Egs.(21) and(22) leads to

which can be solved exactly by the ansaizp=a(1—
X(1—¢_), whereg, ,¢_ arZ:- tv)\//o(reab rogg of S[he ;)P(;Ig/- K+ (1HK)VILe+H(1-3¢%) — e+ V20,0
nomial (1-¢?)¢—P’'=0, which exist for |P'|<P} +V[(1-¢?)o—P']=0, (26)
=2/3 = (u¥% yg'?)(2/3*?) in the original scaling In the
case wherep, ,¢_ are the stable solutions, one easily findswhereH=1+}h’ cod @ ande= (v’ + 3h’)cos a.

The boundary conditions are

K
V= \[E(<P++QD—Z<P0), (24) ¢ ¢ for x'— oo, @0

wheregg is the unstable solution. These walls should exist inwhere ¢.. correspond to stable ARghe solutions of (1

the range of stable ARs. The stationary walls, which are of- ¢2)o=P’]. One expects a unique solution that fixéss

the form ¢ =tanh(yy/\2K), have been observed in experi- a nonlinear eigenvalue.

ments[7]. ForV=0, i.e., on the HB line, Eq(26) can be integrated
We mention that one can also have traveling walls thatwe sete= e, on the HB ling,

connect thainstablestate with one of the stable states. Then

one actually has a continuous family of front solutions with Kd%@o+[H(1—¢§) — €] o=0. (28)
different velocities. However, only one front is stable and its

velocity is given by either This equation is the equivalent of E(L3) in reduced units

and with the integration constant chosen zero, as is appropri-
V* =2\/R(<p+—<p0) ate on the HB line. One easily finds
or eo(P)=—H¥(1-v")"P|. (29)
K = i i
T LA _ rom Eq.(26) we expect the velocity to depend linearly on
v \/;(¢++ Po=2¢-), @5 €o, SO We write
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e=@gt e V+---, e=egteV+---, (30

which leads at first order iN to

I, L 1= €19,00— (1+K) P2 00— [ (1~ 05) po— P’],( )
31

with the linear operator

L=Kd +H(1-3¢}) — €. (32
For smallP’ the last term in Eq(31) can be replaced by
—(K/IH) %, [see Eq(28)], and then Eq(31) can be inte-
grated to give

Loy=e100—[(1+K)—K/H]d,¢0+C. (33

The constanC is to be chosen such that;=0 behind the
wall (x——o for V>0), i.e. at leading ordeC=¢; (we
choosepg~ —1 for x— — ). Then—(2H + €y) 1 —2¢€4 at

the tip of the wall. This might seem like a contradiction with

the boundary condition$27), which actually requireep,
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FIG. 5. Comparison of analytical and numerical velocity of
walls for h’=0, P'=0, =0, i.e.e=v', K=1; solid line, ana-
lytical result; dashed line, numerical solution of the nonlinear ei-
genvalue problen26),(27); points, numerical simulations of Eqgs.
(3) and(4) in 1D.

In Fig. 6(b) the wall velocity is shown as a function of
time (for the momentary position we took the zero gf.

—0 on both sidegsince ¢, already satisfies the correct After a rather long time delay there is an exponential growth

boundary conditions However, one sees from E(26) that
at the tip there is a slow decay over the length

2

A= 2H+6V'

(39

which is not included in thep; obtained from Eq(33). In
principle one can determine the ful; by an asymptotic
matching procedure, but it is much simpler to determihe

(exponento), an overshoot, and an exponential relaxation
into the steady state. The numerically determined growth ex-
ponent could be fitted in the range 0.602<0.05 (other
parameters as in Fig. )6accurately by ¢=0.000012
+0.83221834 Moreover we found that the complete curves
V(t") for differente collapse to a single curve by measuring
times in units of 14 andV in units of e— €5. We have(as
yet) no explanation for this result.

The traveling walls are often observed in experiments

via a solvability condition by invoking the fact that the trans- 13 14, although their velocity has not been studied quanti-

lation moded ¢ is a zero-eigenvalue solution bf Then, at
lowest order, the slowly decaying part @f is not needed.
Multiplying Eq. (33) by d,,¢, and integrating from- to

+o gives
=< EO——I\IZH 1+K—-K/H
Ty 3 ?( e )

where we have usefl” .. d7n d,¢,=2 and [, d7(d,eq)?

~ [T deH/2K(1— ¢?)=4%\H/2K at lowest order inP’.
This then is the desired result for the velocity The com-

(39

tatively. The phase shift should be experimentally observ-
able.

VII. DISCUSSION AND CONCLUDING REMARKS
A. Discussion

We have presented a study of the vicinity of the C2 point
(Var,war) Where the ZZ instability crosses over to the AR
transition. In our normal-form type model equations Yhev
plane is mapped onto the-v plane, with the C2 point at the
origin. The model expresses a generic stability diagram of

parison of this formula with numerical results is shown in straight rolls(normal, abnormal and oblique rollsnd ZZ

Fig. 5.
Now coming back to the phaa@ of the rolls we observe

solutions. Forv<<0, where NRs are destabilized first by the
ZZ instability, there is a bubble of unstable rolls in theP

from Eg. (21) that there is a phase shift across the wall,plane. In this range one has ZZ solutions that extend well

which is given by

€E— €
VAR

AY=2 (36)

above the AR instability age=0, and terminate in an un-

usual homoclinic/heteroclinic bifurcation scenario leading
from ZZs to ARs. Whereas the existence and stability of
straight-roll solutions can be obtained directly from hydro-
dynamics[7,8,19, it would have been hard to discover the

This phase shift accumulates at the front of the wall. Atglobal bifurcation without the simple equations.

leading order, the phase shift is independenktdfkee Eq.
(35]. In Fig. 6@ we show a simulation of Eq$3) and(4)
for P'=0, €=0.05 with initial conditions that initiate an

A particularly interesting feature is the hysteresis found
when the HB line is crossed from above. Then ARs persist
down to a well-defined stability limit, the RS line. Such pre-

evolution toward a static, symmetric ZZ wall. Since such adictions are in agreement with experimeft4,17. In fact,
wall is unstable fore>0 there eventually occurs a symmetry for many other nematics, like the one considered in Refs.

breaking(here induced by numerical nojseo that a travel-
ing wall is formed(here traveling upwand The phase shift

[7,8], the ZZ instability line meets the primary bifurcation
line at another significant C2 poirithe Lifshitz poin} [3],

and the slow decay in the front part of the wall can be seenwhich separates the regimes where oblique and normal rolls
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2000.0 a saturated, there is no driving force left for undulations. The
reduction of the heteroclinic roll angle in developed ZZs, and
the eventual straightening out at the HB line is of different
1500.0 | i origin. It arises from the fact that the nonlinear contribution
of the term that couples the director to local rotation of the
rolls [the term in Eq(2) proportional toh(>0)] counteracts
the abnormal-torque effects of E(l) and eventually over-
comes the linear contributigproportional tov(<0)].

Right on the HB line the ZZ walls degenerate to AR walls
that are perpendicular to the normally oriented rgbs at
least roughly sp In this way the HB line can be identified
experimentally. Further experimental study of this line
would be useful in view of the discrepancies between experi-
0.0 ment and hydrodynamical theory mentioned previously.
Phase © When the voltage and/or frequency is increased further a ZZ
in the opposite sense starts to develop. ZZ solutions exist but
b they are unstable against spontaneous acceleration of the
walls, as we have shown in detdfee Fig. 6 for a simula-
tion). Surprisingly, the velocity at which the wall finally
settles dowr(after a rather long transient including an over-
010 1 | shoo}, depends linearly on the distance from the HB line. It
would be interesting to test our prediction by preparing a ZZ
wall below the HB line, and observing its acceleration under
appropriate voltage and/or frequency changes.

In simulations of Egs(1) and (2) with random initial
0.05 1 conditions we have not found long-time solutions other than
those presented here. Outside the ZZ rafige, below the
ZZ line, above the HB line and far>0) we either find NRs
(u<0) or ARs (u>0). Between the ZZ and the HB lines,
0.00 ‘ the system typically ends up in a symmetric ZZ state near to
0.0 10000.0 20000.0 30000.0 the heteroclinic limit.

Time t/

1000.0 {

Position y’

500.0 -

Velocity V

. . . B. Limitations of the model
FIG. 6. Simulation of the process of symmetry breaking of a

wall for P'=0, €=0.05,h"=0.9, v'=—0.25, =0, K=1. Ini- Now let us comment on the validity of the model. First of
tially o(y’)=tanh§/'/\2), 9(y’)=0. (a) Plot of 9(y’) for a se- all, it is restricted to the immediate neighborhood of the C2
quence of times. The time interval between curve\ié=400.  point and to situations where one has a well-ordered and
Initially 9=0. At first a ZZ state develops, which eventually un- defect-free roll pattern. Second, whéndepends orx one
dergoes a symmetry breaking leading to a moving w@). The  has to allow for a term proportional téd,¢ in Eq. (2),
velocity of the wall as a function of time. At first the velocity which is of the same order as the last term. It can easily be
increases exponentially, then deceases to a constant. included in the analysis of the parallel walls in Sec. VIA
where it only leads to quantitative corrections. Adding only

appear at threshold. The vicinity of this point can be de-

scribed by a generalized Ginzburg-Landau equation first in'EhIS term has a qualitative effect on the destabilization of

troduced in[20]. ARs, where it leads to a parallel, upward shift of the resta-

Let us offer an intuitive picture of some aspects of thePilization line [RS in Fig. 1a)], which now does not pass
. . ¥ Y N through the C2 point. The modulation wave vector now has a
scenario. Increasing the “abnormal torque” on the di-

. . nonzero componery, in the x direction. The instability thus
rector[first term on the rhs of Eq1)] increases. Because of poners, y

th ling t tional tord..g bined local becomes of skewed-varicose type.
€ coupling term proportional 1oy, a combined foca However, when¢ depends orx andy, one also has to

rotation of the rolls and of the director (in the opposite  include singular mean flow terms, which destroy the smooth
sensg becomes unstable first if<0, i.e., when the director gradient expansion in 2D situatiogactually 3D on the hy-
distortion reinforces the roll bending. Thus for<0 (andy  drodynamic level For this purpose one has to introduce an
>0) one first has the ZZ instability. We conclude that in theadditional(statig equation for the mean flow, which couples
vicinity of the C2 point, the abnormal torque lies at the ori- mainly to the phase equatida8]. One of the effects of the
gin of the ZZ instability (together with positive reinforce- mean flow is to deform the restabilization line, in particular
menj. This is in contrast to the situation near the primarynear the C2 point, such that it now passes again through the
threshold in the vicinity of the Lifshitz point. Here the torque C2 point. The restabilization line remains above the one of
on thec director is weak, and the ZZ instability involves the simple model and the instability remains of the skewed-
only the phase of the rolls. varicose type.

Restabilization of normally oriented ARs far>pu,g, v The singular mean flow also influences the stability of
<0 is related to the fact that once the abnormal torque iblique rolls (P#0). The bubble of unstable rolls in the-
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P plane(at fixed v<<0) discussed at the end of Sec. IV is rector can escape out of the symmetry plane, which may
deformed[see Fig. 2) for an examplé although its width  mimic the transition from NRs to ARs described #y If the
very near to the C2 point still appears to scale approximatelposition of the line/wall is not fixed from outside it can be
with (—»)%2 The stability properties of ZZ solutions are described by our phase varialleIn those cases where one
presumably also affected by the mean flow. has a potentia(no dissipative drivingg our model predicts
Let us repeat that these additional terms do not influencev<0 so that the ZZ instability always occurs first, which
they-dependent solutions discussed here. A detailed study @fppears to be consistent with experimef26—27. The

their effect is beyond the scope of this work. model is not applicable if the coupling terms between the
two active modes vanish by symmetry, as is the case in
C. Relation to other systems Ising-Bloch-type transitions of domain wall28,29.

Slightly above the ZZ instability the coupled equations

Let us comment on the situation in homeotropically(l) (2) can be reduced to the single equation

aligned cells in materials with negative dielectric anisotropy,
where one has electroconvection after a benddfieksz 2,6=D1320+ Dyasg_ D4330+ I'o,(,0)° (37
transition. Without an additional magnetic field in the plane

of the layer, one has a direct transition to disorder

[15,16,21,22 However, with a magnetic field one recovers aWith  Dy=Dy(u—puz)/|p.d, Da=DoKy/|uzZ, T
scenario reminiscent of the one in planar cells. The AR tran=(D2/»)“D2g’/|u,,. This weakly nonlinear description of
sition has recently been studied quantitatii@lg]. In fact, in ~ the ZZ instability is valid foru—puzz/|uzz|<0. Equation
the limit of small magnetic field, one can deduce from the(37) is of very general importance. It describes the ZZ insta-
condition of overall rotational invariance the relation bility in anisotropic as well as isotropic media and by setting
3S,,/S,,=—h'=2. As a consequence the restabilizationa=dy6 it becomes the celebrated Cahn-Hilliard equation
line is vertical[see Eq(10)] and the HB line is tilted to the [26,30, which describes coarsening in systems with a con-

fight. When the rotation of the director becomes large, S€rved order parameter.
disclination lines are formed and more complex patterns
arise[23,24].

Our derivation of the normal-form equations indicates
that the underlying two-mode scenario can be of general im- We wish to thank W. Pesch, E. Plaut, A. G. Ro3berg, and
portance, e.g. for certain types of line defects and some type3. Dressel for valuable discussions and help. Financial sup-
of domain walls in the bend-Fedricksz distorted state in port by the EU through TMR network Grant No. FMRX-
nematics. Sometimes in these 1D extended structures the di-T96-0085 is gratefully acknowledged.
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