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Zigzag structures and domain walls in electroconvection of nematic liquid crystal

H. Zhao and L. Kramer
Universität Bayreuth, Theoretische Physik II, Universita¨tsstraße 30, D-95440 Bayreuth, Germany

~Received 22 March 2000!

To describe the secondary-bifurcation scenario in ac-driven electroconvection of a planarly aligned nematic

liquid crystal layer, we have constructed a generic phase equation coupled to theĉ director. The equations are
applicable in particular in the vicinity of the codimension-2 point, where the zigzag and the abnormal roll
instabilities meet. This point is also the origin of a line of homoclinic bifurcations, which separates a region
where one has stationary zigzag walls from one with spontaneously accelerated abnormal roll walls. The final
velocity of the walls depends linearly on the distance from the bifurcation. We analyze the scenario analyti-
cally, test it numerically and propose an experimental check.

PACS number~s!: 61.30.Gd, 47.20.Ky, 47.65.1a
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I. INTRODUCTION

ac-driven electroconvection in planarly aligned nema
liquid crystal layers has become one of the prime examp
for anisotropic pattern formation. Over the last decades
rich-threshold and near threshold scenario has been lar
clarified ~with some interesting exceptions, see, e.g.,@1,2#!
and much of the interest has shifted to secondary and hi
instabilities@3#. From numerical bifurcation analysis of ro
solutions in the standard hydrodynamic framework, it h
become clear that the first destabilization of the comm
normal rolls~NRs!, which are oriented perpendicular to th
alignment axis, occurs with increasing voltage not on
through the well-known zigzag~ZZ! instability @4–6#, but
also through a homogeneous symmetry breaking leadin
abnormal rolls~ARs! @7–9#. In the conduction range thi
occurs at higher frequency. In ARs there is a rotation of

ĉ director ~projection at midplane of the directorn̂ onto the
cell plane! out of its symmetric orientation perpendicular
the rolls, either to the left or to the right, homogeneously
the cell plane. Because of the planar anchoring the rota
vanishes at the bounding plates, resulting in a twist defor
tion and making the deformation difficult to detect by t
usual optical techniques@10#.

The two instabilities meet in a very unconvention
codimension-2~C2! point, where two more lines emerge:
line where ARs restabilize against ZZ modes, and an in
esting line of homoclinic~or heteroclinic! bifurcations. We
have recently shown that this scenario can be unders
from very simple phenomenological equations includi
only the phase of the roll pattern and the AR mode@11#.

Here we will discuss these equations in greater depth a
in particular, present new results concerning the motion
domain walls separating the two versions of ARs. The m
interesting feature is that those walls, which below the
moclinic bifurcation ~HB! line induce a ZZ configuration
accelerate spontaneously beyond the HB line and settle d
at a velocity that depends linearly on the distance from
bifurcation. This is unusual: conventional acceleration ins
bilities are like pitchfork bifurcations with the velocity pro
portional to the square root of the distance from the bifur
tion point @12#. These domain walls are easily observab
PRE 621063-651X/2000/62~4!/5092~9!/$15.00
c
s
e
ly

er

s
n

to

e

n
a-

l

r-

od

d,
f

st
-

n
e
-

-

@13,14# by the conventional techniques and quantitative
periments on them would be interesting.

These moving domain walls initiate a route to spatiote
poral chaos. As the voltage is increased the walls are cre
spontaneously, together with defects~dislocations and phase
slip lines!. Thus a very anisotropic spatiotemporally chao
state with structures that are extended in the direction p
pendicular to the rolls is established@14#. A description of
this state in terms of more general equations where the
plitude of the roll pattern is included, appears promisin
Such equations have been derived for electroconvectio
homeotropic systems@15,16#, but an adaption to planar sys
tems is possible@16#.

In Sec. II, we construct the equations valid in the neig
borhood of the C2 point at voltageVAR and frequencyvAR
and in Sec. III the stability of their homogenous solution
corresponding to straight rolls, is studied. In Sec. IV, t
stationary ZZ solutions are analyzed, leading in particula
the homoclinic bifurcation line. The results are compar
with the experiments in a channel geometry@11,17# and the
effect of a finite width is considered in Sec. V. In Sec. VI w
analyze the traveling domain walls and in Sec. VII we inte
pret the results, discuss the limitations of the model and
late to convection in homeotropically aligned cells and oth
systems.

II. THE COUPLED GINZBURG-LANDAU PHASE
EQUATIONS

We now construct phenomenological equations in or
to describe the system in the vicinity of the C2 poi
(VAR ,vAR) @7,8,11# ~with the voltageV we always denote
the RMS of the ac voltage!.

Near the AR transition, there are two weakly damp
modes, the phase mode of the roll pattern and theĉ-director
mode. Theĉ director can be visualized as the projection
the director at the midplane on the x, y plane. Letf describe
the ~real! amplitude of theĉ-director mode~i.e., an angle!
and Q5qx1u be the phase of the roll pattern, such th
qx̂1¹W u gives its local wave vector. The transition from NR
to ARs is described most simply by
5092 ©2000 The American Physical Society
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PRE 62 5093ZIGZAG STRUCTURES AND DOMAIN WALLS IN . . .
] tf5~m2gf2!f1~K1]x
21K2]y

2!f2g]yu, ~1!

with positiveg, K1 andK2. The first expression on the righ
hand side~rhs! describes the supercritical pitchfork bifurc
tion to ARs asm passes from negative to positive and t
second term gives diffusive smoothening by the elasticit
We expectm to be roughly proportional toV22VAR

2 . The

last term describes an additional torque on theĉ director
when the rolls are~slightly! oblique @the local roll angle is
arctan(]yQ/]xQ)']yu/q]. This torque acts as a bias on th
pitchfork bifurcation.g must be chosen positive, so reorien
ing the rolls favors rotation of theĉ director in the opposite
sense, as is the case for all the nematics studied@7,8#.

The dynamics of the phase modulations is governed
the equation

] tu5~D1]x
21D2]y

2!u2~n1hf2!]yf, ~2!

with positiveD1 , D2, andh ~as it turns out!. The first term
describes ordinary phase diffusion and the second expres
represents the coupling to theĉ-director mode. The nonlinea
term is essential, because, as we shall see,n crosses zero a
vAR . We then expectn to be roughly proportional tov
2vAR .

Equations~1! and ~2! contain the manifestly dimension
less parametersh85gh/(D2g), n85ng/(umuD2), K18
5K1 /D1, and K285K2 /D2. It is useful to also consider a
rescaled version of the equations by introducingt5t8/umu,
x5AD1 /umux8, y5AD2 /umuy8, f5Aumu/gw, u
5(umu/g)AD2 /gq, and one obtains

] t8q5]x8
2 q1]y8

2 q2~n81h8w2!]y8w, ~3!

] t8w5K18]x8
2 w1K28]y8

2 w1~612w2!w2]y8q. ~4!

The main assumption underlying the validity of Eqs.~1!
and~2! is that a smooth gradient expansion is possible. T
can be expected to hold for quasi-1D situations~spatial
variations only inx or y, except for linear terms inu). Oth-
erwise, singular mean-flow contributions are expected
play a role. We will come back to this point in Sec. VII.

Equations~1! and ~2! are particularly well founded in
situations without variations alongx ~except for a linear term
in u). Then their derivation from the underlying hydrod
namic equations, including the nonsingular mean flow c
tributions considered in@7,8#, is well established. There are
however, problems with the magnitude of the coefficien
when comparing with experiments~see Sec. V!. The solu-
tions we consider here will mostly depend only ony ~excep-
tion in Sec. VI!, so only their stability is influenced by varia
tions alongx.

III. HOMOGENEOUS SOLUTIONS AND THEIR
STABILITY

Straight-roll solutions~normal or oblique! are character-
ized by f5fs (5const), ]xu5Q (const), and ]yu
5P (5const), where from Eq.~1!

~m2gfs
2!fs2gP50. ~5!
s.

y

ion

is

o

-

,

Thus in the caseP50 one hasfs50 ~NRs!, which is stable
against homogeneous perturbations form,0. At m50, NRs
lose stability and one has a pitchfork bifurcation generat
two branches of ARs withfs5fAR56Am/g. In the case
PÞ0 ~oblique rolls!, one has from the cubic polynomial~5!
a real rootfs1 with sgn(fs1)52sgn(P) that varies continu-
ously with m and is stable against homogeneous pertur
tions. At msn53(gPg1/2/2)2/3 there is a saddle-node bifurca
tion generating two more real rootsfs2 ,fs3 with sgn(fs2)
5sgn(fs3)5sgn(P). Choosingufs3u.ufs2u, the rootfs3 is
stable, the other one unstable.

To test for stability with respect to spatial modulation
we linearize around the straight-roll solutions and calcul
the growth rates of the modes;est1ı(sxx1syy). One finds

s52
1

2
B1A1

4
B22C ~6!

with

B52m13gfs
21~K21D2!sy

21~K11D1!sx
2 , ~7!

C5@gn2D2m13~gD21hg/3!fs
2#sy

21K2D2sy
4

1D1@2m13gfs
21K1sx

21~K21K1D2 /D1!sy
2#sx

2 .

~8!

For stability one needsB.0 andC.0. Thus, for NRs (fs
50, P50), there is, aside from the homogeneous instabi
at m50 leading to ARs, a long-wave ZZ instability (sx
50,syÞ0) at

m5mzz5Szzn with Szz5g/D2 . ~9!

For negativen the ZZ instability comes first, and Eqs.~1!
and ~2! indeed describe the observed crossover scenario
indicated in Fig. 1~a!, lines AR and ZZ. From the expressio
for C one sees that a nonzerof suppresses the ZZ instability
For negativen this effect leads to restabilization of AR
above the line

m5Srsn with Srs5
Szz

3Szz/Shb22
,

Shb523g/h, ~10!

see Fig. 1~a!, line RS ~we introducedShb for later conve-
nience!. Note that 3Szz/Shb52h8. The denominator in the
expression forSrs could be positive and then the RS lin
would have a positive slope.

For ~slightly! oblique rolls withf5fs1 , PÞ0, destabi-
lization still takes place in the form of a ZZ instability (sx
50). The onset is obtained from the condition

Szzn2m13~12Szz/Shb!gfs1
2 50, ~11!

see dashed line in Fig. 1~a! for gg1/2P50.0011. In fact, at
fixed n there is an unstable bubble in them-P plane @Fig.
1~b!; the valuegg1/2P50.0011 is indicated by the dashe
line#. The half width Pmax of the bubble is given by
gg1/2Pmax52(223Szz/Shb)

21/2(2Szzn/3)3/2.
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5094 PRE 62H. ZHAO AND L. KRAMER
In a more accurate description, the modulation wave v
tor (sx ,sy) that destabilizes oblique and abnormal ro
would have a small, but nonzerox component (sxÞ0) and
the unstable bubble would be somewhat larger~see Sec.
VII !.

IV. THE AR-ZZ SCENARIO

We now analyze the scenario expected whenm is varied
for negativen. We first look for static solutions that depen
only on y. Then one has the first integral of Eq.~2!,

D2]yu2~n1hf2/3!f5J~5const!. ~12!

Eliminating ]yu from Eqs.~1!, ~12! leads to

K2]y
2f52~m2mzz!f1g8f31SzzJ, ~13!

with g85g(12Szz/Shb), which can be integrated. Invokin
the analogy of a point particle~coordinatef, time y) one
sees that the bounded solutions are either constant~straight
rolls! or periodic ~undulated rolls!. Without the appearanc
of defects the average orientation of rolls cannot change
the average of]yu in the undulated rolls remains that of th
straight rolls (5P) they were born from. From Eq.~12! one
then hasJ5D2P2^(n1 1

3 hf2)f& (^•••& is the spatial av-
erage!.

First we look for ZZ solutions in the caseP5^]yu&50,
wheref oscillates symmetrically around zero (J50). From
Eq. ~13! one gets a one-parameter family of periodic so

FIG. 1. ~a! Stability diagram forSzz/Shb522/5. Solid~dashed!
lines are forP50 (gg1/2P50.0011);~b! The unstable bubble in the
m-P plane for different values ofn.
c-

so

-

tions above the ZZ line~apart from phase shifts! with wave
number p between zero andpmax5A(m2mzz)/K2, which
can be expressed in terms of elliptic functions. In particu
there is the heteroclinic limitp→0 where the solution de
generates to a widely spaced array of domain walls given
f5fzz tanh(ay) with fzz5A(m2mzz)/g8, a5pmax/A2.
They separate regions wheref approaches the constant s
lutions 6fzz @Fig. 2~a!# and the roll angle approache
7arctan„Pzz/(q1Q)… with

gg1/2Pzz5
Szz

Shb~12Szz/Shb!
3/2

~m2mzz!
1/2~m2mhb!.

~14!

Thus, the domain walls select a member of the oblique-
family. The angle~and thereby the undulation! first increases
with m and then decreases@Fig. 2~b!#, reaching zero at the
‘‘HB line’’ @see Fig. 1~a!#.

m5mhb5Shbn. ~15!

Therefzz coincides withfAR @Fig. 2~a!# and one is left with
straight ARs with a~widely spaced! array of domain walls
separating regions with opposite director twist. Above t
line ~and also for positiven) only moving domain walls
appear to exist stably~details will be discussed below!.

Therefore, when the line HB is reached, the domain wa
annihilate pairwise, and eventually a single-domain AR
established. From now on ARs persist under changes of
parameters until their stability limit is reached. The integ
tion constantJ maintains the AR value2(n1 1

3 hfAR
2 )fAR

FIG. 2. ~a! The ĉ director anglef for the heteroclinic ZZ solu-
tion and for the~normally oriented! AR; ~b! wave numberPzz of
the oblique roll selected by the heteroclinic ZZ solution forn
50.10. Also shown is the unstable bubble~dashed line! of oblique
rolls. The other parametersD250.105, h50.0876,g50.182, and
g50.0276 are taken from the hydrodynamics atv51.0 @18#. The
dotted line shows the unstable bubble including mean-flow effe
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PRE 62 5095ZIGZAG STRUCTURES AND DOMAIN WALLS IN . . .
(50 atmhb). Thus, on loweringm, ARs persist down to the
line RS where a discontinuous ZZ instability occurs. There
a relation between the slopes of the three lines through
C2 point,Srs5Szz/(3Szz/Shb22), which can be fitted with
the experimental data@11#. This relation is in fact invariant
under the linear mapping that connect the control parame
m andn of the model with the experimental control param
etersV22VAR

2 andv2vAR .
Are the periodic solutions in the ZZ domain, i.e. betwe

the ZZ and HB lines, stable? Clearly they are unstable fop
nearpmax because the NRs, where they bifurcate from ap
5pmax, are unstable in this range againstpmax/2 with a
manifestly positive growth rate. Thus, presumably all pe
odic solutions are unstable against coarsening, because
bility boundary toward smaller values ofp is not apparent.
Such a stability boundary would have to be related to a
tionary bifurcation, which does not exist.

In the casePÞ0, the corresponding scenario is shown
Fig. 1~a! ~dashed lines!. The ZZ instability remains sharp
since translation invariance alongy remains intact, but one
hasJÞ0 and the periodic solutions are asymmetric. In t
heteroclinic limit J approaches zero, so that the roll ang
are again determined from Eq.~14!, but now the two arms
have different length. Approaching the HB line, which
determined fromPzz5uPu, the relative length of the shorte
arm vanishes.

V. COMPARISON WITH EXPERIMENTS; FINITE WIDTH

The NRs, ARs, and ZZ rolls have been studied exp
mentally in a fairly narrow cell of dimensionsLx5315 mm,
Ly'10 000mm with the rolls oriented parallel to the lon
scale, and show agreement with the scenario discussed a
@11,17#. The slight asymmetry in the observed ZZs indica
that a small, but nonzero wave numberP was present, result
ing presumably from a small misalignment between
alignment axis of the director and the short axis of the ch
nel.

However, the slopes obtained from the experiments
not agree with those obtained from theory, when the coe
cients of Eqs.~1! and ~2! are derived from hydrodynamic
and taken near the C2 point (VAR ,vAR). The slopes obtained
in this way vary quite strongly with frequency@18#.

The effect of the finite width of the experimental cell~12
roll pairs! is to perturb translation invariance, which can
accommodated in the model by including a~small! damping
term 2au with a;D1(2p/Lx)

2 on the rhs of~2!,

] tu5~2a1D1]x
21D2]y

2!u2~n1hf2!]yf. ~16!

As a result the ZZ instability sets in at finite wave numb
pzz. One has

m52~A2Szzn2Aa1!2,

pzz5
1

K2
Aa1~A2Szzn2Aa1!, ~17!

wherea15(K2 /D2)a. The restabilization line is characte
ized by
s
e

rs

-
sta-

a-

e
s

i-

ove
s

e
-

o
-

r

m5
1

~223Szz/Shb!
2
$2~223Szz/Shb!~a11Szzn!14a1

2A8a1@2a12~223Szz/Shb!~a11Szzn!#%,

prs52
1

K2~223Szz/Shb!

3$2a12A2a1@2a12~223Szz/Shb!~a11Szzn!#%.

~18!

This does not change the topology of the scenario, but
C2 point is moved tom50, n52a1 /Szz. The slopes of the
ZZ and RS lines become zero at the C2 point and the crit
wave number goes to zero there. The HB line is unchang
In Fig. 3, we have plotted the stability diagram and the cr
cal undulation wave numberpc for the dampinga50.1. The
finite wavelength of the ZZ undulations observed in the e
periment presumably results from this effect.

VI. TRAVELING DOMAIN WALLS

In the following we return to the unperturbed Eqs.~1!,
~2!. Since forP50 the NR to AR transition corresponds to
pitchfork bifurcation, one has coexistence of symmet
degenerate states. One then expects the existence of sta
ary domain walls separating the states. Obliqueness of

FIG. 3. ~a! Stability diagram with the damping terma50.1
~solid!; dashed lines pertain toa50; ~b! The critical wave numbers
at the ZZ instability and on the restabilization line atSzz/Shb

50.4, K251, a50.1.
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5096 PRE 62H. ZHAO AND L. KRAMER
rolls acts as a bias and renders the bifurcation imperfect.

gg1/2uPu,gg1/2Pmax5A 4
27 m3/2, i.e., for not too large roll

angle, there still remain two stable asymmetric abnormal
solutions, and traveling domain walls are expected to ex
We will show that the situation is actually more complicate

For the analysis of this problem we use the scaled Eqs~3!
and~4!. We look for solutions where the wave vector of th
rolls is the same on both sides of the wall. We first sepa
out from the phaseq all linear terms, i.e. we writeq
5Q8x81P8y81q̄, where q̄ can now be assumed to b
bounded. In order to allow for domain walls of differe
orientations we rotate the coordinate system,x85j cosa

2z sina, y85j sina1z cosa and consider solutionsq̄ and
w that depend only on one space variable~we choosez).
Then Eqs.~3!, ~4! reduce to

] t8q̄5]z
2q̄2~n81h8w2!cosa]zw, ~19!

] t8w5K]z
2w1~12w2!w2cosa]zq̄2P8, ~20!

with K5K18 sin2 a1K28 cos2 a. We look for solutions that de
pend only onh5z2Vt8, so that

]h
2q̄1V]hq̄2~n81h8w2!cosa]hw50, ~21!

K]h
2w1V]hw1~12w2!w2cosa]hq̄2P850. ~22!

A. Parallel walls

There is the simple casea5(p/2) (cosa50) pertaining
to walls parallel to normal rolls~perpendicular to the undis
turbed director!. There theĉ director does not couple to th
phase and one is left with the equation

K]h
2w1V]hw1~12w2!w2P850, ~23!

which can be solved exactly by the ansatz]hw5a(12w1)
3(12w2), wherew1 ,w2 are two~real! roots of the poly-
nomial (12w2)w2P850, which exist for uP8u,P08
52/33/2@5(m3/2/gg1/2)(2/33/2) in the original scaling#. In the
case wherew1 ,w2 are the stable solutions, one easily fin

V5AK

2
~w11w222w0!, ~24!

wherew0 is the unstable solution. These walls should exis
the range of stable ARs. The stationary walls, which are
the form w5tanh(hy/A2K), have been observed in exper
ments@7#.

We mention that one can also have traveling walls t
connect theunstablestate with one of the stable states. Th
one actually has a continuous family of front solutions w
different velocities. However, only one front is stable and
velocity is given by either

V* 52AK~w12w0!

or

V†5AK

2
~w11w022w2!, ~25!
or

ll
t.
.

te

n
f

t

depending on which is larger@19#. The velocityV* pertains
to the case where the velocity is selected by the leading e
on the unstable side~linear front selection!. The other case is
actually very similar to the stable-stable wall~nonlinear front
selection!.

B. Perpendicular walls

Walls with cosaÞ0 behave very differently. Snapshots
examples from numerical simulations are shown in Fig.
From Eq.~21! it follows that for VÞ0 ~however small! one
has]hq̄50 at infinity ~since]hw50 there!, which is con-
sistent with the boundedness ofq̄ and expresses phase co
servation. Eliminating]hq̄ from Eqs.~21! and~22! leads to

K]h
3w1~11K !V]h

2w1@H~123w2!2e1V2#]hw

1V@~12w2!w2P8#50, ~26!

whereH511 1
3 h8 cos2 a ande5(n81 1

3 h8)cos2 a.
The boundary conditions are

w→w6 for x8→6`, ~27!

where w6 correspond to stable ARs@the solutions of (1
2w2)w5P8]. One expects a unique solution that fixesV as
a nonlinear eigenvalue.

For V50, i.e., on the HB line, Eq.~26! can be integrated
~we sete5e0 on the HB line!,

K]h
2w01@H~12w0

2!2e0#w050. ~28!

This equation is the equivalent of Eq.~13! in reduced units
and with the integration constant chosen zero, as is appro
ate on the HB line. One easily finds

e0~P8!52H3/2/~12n8!1/2uP8u. ~29!

From Eq.~26! we expect the velocity to depend linearly o
e2e0, so we write

FIG. 4. Snapshots reconstructed from 1D simulations of perp
dicular walls moving downward. Across the wall the orientation

the ĉ director changes. Double-headed arrows indicate the orie
tion far from the wall. The gray scales representF5(w
11.5)cos@q8x81q(y8)# ~white: F50) with the wave numberq8
50.2 of the pattern chosen arbitrarily.~a! Wall between ARs par-
allel to the unperturbed director forP850, n8520.25, h850.9,
a50 (e2e050.05),K51; ~b! wall between slightly oblique ARs:
P850.05, n8520.30, h850.9, a50 (e2e050.05), K51.
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PRE 62 5097ZIGZAG STRUCTURES AND DOMAIN WALLS IN . . .
w5w01w1V1•••, e5e01e1V1•••, ~30!

which leads at first order inV to

]hLw15e1]hw02~11K !]h
2w02@~12w0

2!w02P8#,
~31!

with the linear operator

L5K]h
21H~123w0

2!2e0 . ~32!

For smallP8 the last term in Eq.~31! can be replaced by
2(K/H)]h

2w0 @see Eq.~28!#, and then Eq.~31! can be inte-
grated to give

Lw15e1w02@~11K !2K/H#]hw01C. ~33!

The constantC is to be chosen such thatw150 behind the
wall (x→2` for V.0), i.e. at leading orderC5e1 ~we
choosew0'21 for x→2`). Then2(2H1e0)w1→2e1 at
the tip of the wall. This might seem like a contradiction wi
the boundary conditions~27!, which actually requirew1
→0 on both sides~since w0 already satisfies the correc
boundary conditions!. However, one sees from Eq.~26! that
at the tip there is a slow decay over the length

l52
2

2H1e
V, ~34!

which is not included in thew1 obtained from Eq.~33!. In
principle one can determine the fullw1 by an asymptotic
matching procedure, but it is much simpler to determineV
via a solvability condition by invoking the fact that the tran
lation mode]hw0 is a zero-eigenvalue solution ofL. Then, at
lowest order, the slowly decaying part ofw1 is not needed.

Multiplying Eq. ~33! by ]hw0 and integrating from2` to
1` gives

e15
e2e0

V
5

1

3
A2H

K
~11K2K/H !, ~35!

where we have used*2`
` dh ]hw052 and*2`

` dh(]hw0)2

'*21
11 dwAH/2K(12w2)5 4

3AH/2K at lowest order inP8.
This then is the desired result for the velocityV. The com-
parison of this formula with numerical results is shown
Fig. 5.

Now coming back to the phaseq̄ of the rolls we observe
from Eq. ~21! that there is a phase shift across the wa
which is given by

Dq̄52
e2e0

V
. ~36!

This phase shift accumulates at the front of the wall.
leading order, the phase shift is independent ofe @see Eq.
~35!#. In Fig. 6~a! we show a simulation of Eqs.~3! and ~4!
for P850, e50.05 with initial conditions that initiate an
evolution toward a static, symmetric ZZ wall. Since such
wall is unstable fore.0 there eventually occurs a symmet
breaking~here induced by numerical noise!, so that a travel-
ing wall is formed~here traveling upward!. The phase shift
and the slow decay in the front part of the wall can be se
,

t

n.

In Fig. 6~b! the wall velocity is shown as a function o
time ~for the momentary position we took the zero ofw).
After a rather long time delay there is an exponential grow
~exponents), an overshoot, and an exponential relaxati
into the steady state. The numerically determined growth
ponent could be fitted in the range 0.002,e,0.05 ~other
parameters as in Fig. 6! accurately by s50.000 012
10.8322e1.834. Moreover we found that the complete curv
V(t8) for differente collapse to a single curve by measurin
times in units of 1/s and V in units of e2e0. We have~as
yet! no explanation for this result.

The traveling walls are often observed in experime
@13,14#, although their velocity has not been studied quan
tatively. The phase shift should be experimentally obse
able.

VII. DISCUSSION AND CONCLUDING REMARKS

A. Discussion

We have presented a study of the vicinity of the C2 po
(VAR ,vAR) where the ZZ instability crosses over to the A
transition. In our normal-form type model equations theV-v
plane is mapped onto them-n plane, with the C2 point at the
origin. The model expresses a generic stability diagram
straight rolls~normal, abnormal and oblique rolls! and ZZ
solutions. Forn,0, where NRs are destabilized first by th
ZZ instability, there is a bubble of unstable rolls in them-P
plane. In this range one has ZZ solutions that extend w
above the AR instability atm50, and terminate in an un
usual homoclinic/heteroclinic bifurcation scenario leadi
from ZZs to ARs. Whereas the existence and stability
straight-roll solutions can be obtained directly from hydr
dynamics@7,8,18#, it would have been hard to discover th
global bifurcation without the simple equations.

A particularly interesting feature is the hysteresis fou
when the HB line is crossed from above. Then ARs per
down to a well-defined stability limit, the RS line. Such pr
dictions are in agreement with experiments@11,17#. In fact,
for many other nematics, like the one considered in Re
@7,8#, the ZZ instability line meets the primary bifurcatio
line at another significant C2 point~the Lifshitz point! @3#,
which separates the regimes where oblique and normal

FIG. 5. Comparison of analytical and numerical velocity
walls for h850, P850, a50, i.e. e5n8, K51; solid line, ana-
lytical result; dashed line, numerical solution of the nonlinear
genvalue problem~26!,~27!; points, numerical simulations of Eqs
~3! and ~4! in 1D.
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appear at threshold. The vicinity of this point can be d
scribed by a generalized Ginzburg-Landau equation first
troduced in@20#.

Let us offer an intuitive picture of some aspects of t
scenario. Increasingm the ‘‘abnormal torque’’ on theĉ di-
rector@first term on the rhs of Eq.~1!# increases. Because o
the coupling term proportional tog]yu, a combined local
rotation of the rolls and of theĉ director ~in the opposite
sense! becomes unstable first ifn,0, i.e., when the directo
distortion reinforces the roll bending. Thus forn,0 ~andg
.0) one first has the ZZ instability. We conclude that in t
vicinity of the C2 point, the abnormal torque lies at the o
gin of the ZZ instability ~together with positive reinforce
ment!. This is in contrast to the situation near the prima
threshold in the vicinity of the Lifshitz point. Here the torqu
on the ĉ director is weak, and the ZZ instability involve
only the phase of the rolls.

Restabilization of normally oriented ARs form.m rs , n
,0 is related to the fact that once the abnormal torque

FIG. 6. Simulation of the process of symmetry breaking o
wall for P850, e50.05, h850.9, n8520.25, a50, K51. Ini-
tially w(y8)5tanh(y8/A2), q(y8)50. ~a! Plot of q(y8) for a se-
quence of times. The time interval between curves isDt85400.
Initially q50. At first a ZZ state develops, which eventually u
dergoes a symmetry breaking leading to a moving wall.~b! The
velocity of the wall as a function of time. At first the velocit
increases exponentially, then deceases to a constant.
-
-

is

saturated, there is no driving force left for undulations. T
reduction of the heteroclinic roll angle in developed ZZs, a
the eventual straightening out at the HB line is of differe
origin. It arises from the fact that the nonlinear contributi
of the term that couples the director to local rotation of t
rolls @the term in Eq.~2! proportional toh(.0)] counteracts
the abnormal-torque effects of Eq.~1! and eventually over-
comes the linear contribution@proportional ton(,0)].

Right on the HB line the ZZ walls degenerate to AR wa
that are perpendicular to the normally oriented rolls~or at
least roughly so!. In this way the HB line can be identified
experimentally. Further experimental study of this lin
would be useful in view of the discrepancies between exp
ment and hydrodynamical theory mentioned previous
When the voltage and/or frequency is increased further a
in the opposite sense starts to develop. ZZ solutions exist
they are unstable against spontaneous acceleration of
walls, as we have shown in detail~see Fig. 6 for a simula-
tion!. Surprisingly, the velocity at which the wall finally
settles down~after a rather long transient including an ove
shoot!, depends linearly on the distance from the HB line.
would be interesting to test our prediction by preparing a
wall below the HB line, and observing its acceleration und
appropriate voltage and/or frequency changes.

In simulations of Eqs.~1! and ~2! with random initial
conditions we have not found long-time solutions other th
those presented here. Outside the ZZ range~i.e., below the
ZZ line, above the HB line and forn.0) we either find NRs
(m,0) or ARs (m.0). Between the ZZ and the HB lines
the system typically ends up in a symmetric ZZ state nea
the heteroclinic limit.

B. Limitations of the model

Now let us comment on the validity of the model. First
all, it is restricted to the immediate neighborhood of the
point and to situations where one has a well-ordered
defect-free roll pattern. Second, whenf depends onx one
has to allow for a term proportional tof]xf in Eq. ~2!,
which is of the same order as the last term. It can easily
included in the analysis of the parallel walls in Sec. VI
where it only leads to quantitative corrections. Adding on
this term has a qualitative effect on the destabilization
ARs, where it leads to a parallel, upward shift of the res
bilization line @RS in Fig. 1~a!#, which now does not pas
through the C2 point. The modulation wave vector now ha
nonzero componentsx in thex direction. The instability thus
becomes of skewed-varicose type.

However, whenf depends onx and y, one also has to
include singular mean flow terms, which destroy the smo
gradient expansion in 2D situations~actually 3D on the hy-
drodynamic level!. For this purpose one has to introduce
additional~static! equation for the mean flow, which couple
mainly to the phase equation@18#. One of the effects of the
mean flow is to deform the restabilization line, in particul
near the C2 point, such that it now passes again through
C2 point. The restabilization line remains above the one
the simple model and the instability remains of the skew
varicose type.

The singular mean flow also influences the stability
oblique rolls (PÞ0). The bubble of unstable rolls in them-
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P plane ~at fixed n,0) discussed at the end of Sec. IV
deformed@see Fig. 2~b! for an example#, although its width
very near to the C2 point still appears to scale approxima
with (2n)3/2. The stability properties of ZZ solutions ar
presumably also affected by the mean flow.

Let us repeat that these additional terms do not influe
they-dependent solutions discussed here. A detailed stud
their effect is beyond the scope of this work.

C. Relation to other systems

Let us comment on the situation in homeotropica
aligned cells in materials with negative dielectric anisotro
where one has electroconvection after a bend-Fre´edricksz
transition. Without an additional magnetic field in the pla
of the layer, one has a direct transition to disord
@15,16,21,22#. However, with a magnetic field one recovers
scenario reminiscent of the one in planar cells. The AR tr
sition has recently been studied quantitatively@23#. In fact, in
the limit of small magnetic field, one can deduce from t
condition of overall rotational invariance the relatio
3Szz/Shb52h852. As a consequence the restabilizati
line is vertical@see Eq.~10!# and the HB line is tilted to the
right. When the rotation of theĉ director becomes large
disclination lines are formed and more complex patte
arise@23,24#.

Our derivation of the normal-form equations indicat
that the underlying two-mode scenario can be of general
portance, e.g. for certain types of line defects and some ty
of domain walls in the bend-Fre´edricksz distorted state in
nematics. Sometimes in these 1D extended structures th
is

s

.

A

of
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ex
y,
ly

e
of
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r
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s

-
es

di-

rector can escape out of the symmetry plane, which m
mimic the transition from NRs to ARs described byf. If the
position of the line/wall is not fixed from outside it can b
described by our phase variableu. In those cases where on
has a potential~no dissipative driving!, our model predicts
gn,0 so that the ZZ instability always occurs first, whic
appears to be consistent with experiments@25–27#. The
model is not applicable if the coupling terms between
two active modes vanish by symmetry, as is the case
Ising-Bloch-type transitions of domain walls@28,29#.

Slightly above the ZZ instability the coupled equatio
~1!,~2! can be reduced to the single equation

] tu5D1]x
2u1Dy]y

2u2D4]y
4u1G]y~]yu!3 ~37!

with Dy5D2(m2mzz)/umzzu, D45D2K2 /umzzu, G
5(D2 /n)2D2g8/umzzu. This weakly nonlinear description o
the ZZ instability is valid form2mZZ /umZZu!0. Equation
~37! is of very general importance. It describes the ZZ ins
bility in anisotropic as well as isotropic media and by setti
a5]yu it becomes the celebrated Cahn-Hilliard equati
@26,30#, which describes coarsening in systems with a c
served order parameter.
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